Multifractal formalism for self-similar measures with weak separation condition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifractal formalism for self-similar measures with weak separation condition

For any self-similar measure μ on R satisfying the weak separation condition, we show that there exists an open ball U0 with μ(U0) > 0 such that the distribution of μ, restricted on U0, is controlled by the products of a family of non-negative matrices, and hence μ|U0 satisfies a kind of quasi-product property. Furthermore, the multifractal formalism for μ|U0 is valid on the whole range of dime...

متن کامل

Multifractal Measures and a Weak Separation Condition

We define a new separation property on the family of contractive similitudes that allows certain overlappings. This property is weaker than the open set condition of Hutchinson. It includes the well-known class of infinite Bernoulli convolutions associated with the P.V. numbers and the solutions of the two-scale dilation equations. Our main purpose in this paper is to prove the multifractal for...

متن کامل

A modified multifractal formalism for a class of self-similar measures with overlap

The multifractal spectrum of a Borel measure μ in R is defined as fμ(α) = dimH { x : lim r→0 logμ(B(x, r)) log r = α }

متن کامل

Multifractal spectra for random self-similar measures via branching processes

Abstract Start with a compact set K ⊂ Rd. This has a random number of daughter sets each of which is a (rotated and scaled) copy of K and all of which are inside K. The random mechanism for producing daughter sets is used independently on each of the daughter sets to produce the second generation of sets, and so on, repeatedly. The random fractal set F is the limit, as n goes to infinity, of th...

متن کامل

Multifractal Formalism for Innnite Multinomial Measures

There are strong reasons to believe that the multifractal spectrum of DLA shows anomalies which have been termed left sided ME, M]. In order to show that this is compatible with strictly multiplicative structures Mandelbrot et al. M, MEH] introduced a one parameter family of multifractal measures invariant under innnitely many linear maps on the real line. Under the assumption that the usual mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2009

ISSN: 0021-7824

DOI: 10.1016/j.matpur.2009.05.009